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Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are un-
able to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts,
and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed
primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a
food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon
turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well
understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we inves-
tigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants.
We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant
biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the
different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in ligno-
cellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and
insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

The ecology and evolution of metazoans are shaped, at least in
part, by microbial symbionts (1, 2). The formation of symbi-

otic associations with beneficial microbes that confer novel phys-
iological capacities on their hosts has been described as a form of
evolutionary innovation and even allows some animals to occupy
ecological niches that would otherwise be unavailable (1–4). The
ability of animals to gain access to nutrients in plant biomass, an
abundant energy source in terrestrial ecosystems, is facilitated by
the formation of symbioses with microbes, since plant cell walls
are largely composed of recalcitrant polymers that most animals
are unable to deconstruct (5, 6). For herbivorous mammals, espe-
cially ruminants, the role of microbes in mediating plant biomass
degradation has been described (6, 7). In contrast, detailed studies
of lignocellulolytic microbes associated with insect herbivores, the
most species-diverse and dominant plant-feeding animals in most
ecosystems, are limited.

Leaf-cutter ants are hallmark examples of insect herbivores
that gain access to nutrients in plant material through symbioses
with microbes (Fig. 1A and B). Through the cultivation of fungus-
bacterium “gardens” on fresh foliar material, these ants are able to
access nutrients in plant biomass that would otherwise be unavail-
able (8). Despite the central importance of plant biomass degra-
dation to the ecology and evolution of leaf-cutter ants, this process
is poorly understood. It has long been assumed that the dominant
basidiomycetous cultivar in these gardens, Leucoagaricus gongylo-
phorus, can readily degrade plant biomass (9). However, reports
that L. gongylophorus can grow on cellulose in pure culture have

varied (10, 11), and the full extent of this organism’s lignocellulo-
lytic capabilities has not been determined. Culture-based studies
have shown that a diversity of bacteria, yeasts, and microfungi can
also be found in ant gardens (12–14), and recent culture-indepen-
dent investigations have revealed that a distinct community of
bacteria resides in the fungus gardens of leaf-cutter ants (15, 16).
Although the genetic potential of bacteria in Atta gardens has been
shown to be consistent with the degradation of less-recalcitrant
plant material (17), the relative contribution of these microbes to
biomass degradation remains unknown.

The symbiotic gardens of leaf-cutter ants are meticulously
tended by their hosts to maintain a stable microbial assemblage
(18, 19). Fresh biomass is integrated into the top strata of fungus
gardens and progressively degraded as it moves into lower strata.
After 4 to 6 weeks, the ants remove spent fungus garden material
from the bottom strata of gardens. Thus, gardens represent a gra-
dient of biomass degradation whereby fresh biomass, composed
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of diverse polymers, plant toxins, and other compounds, is de-
graded in top strata while partially degraded plant biomass, from
which many usable nutrients have been exhausted, comprises the
bottom strata (Fig. 1C) (20). These gardens are continuously
tended by the ants to facilitate biomass degradation, the removal
of pests, and the prevention of infection from fungal pathogens
(19). Although the two genera of leaf-cutter ants, Atta and Acro-
myrmex, cultivate the same phylogenetic group of L. gongylopho-
rus as the primary cultivar in their gardens (21), these ant genera
have distinct life histories. While species of Acromyrmex maintain
colonies containing �100,000 ants, Atta species can achieve col-
onies with millions of workers and hundreds of fungus garden
chambers (8). Both Atta and Acromyrmex are broadly distributed
throughout Neotropical ecosystems, with species of Atta often
dominating herbivorous niches (22).

In this study, we used genomic and metaproteomic tools to
investigate plant biomass degradation in the fungus gardens of
both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants.
We sequenced the first draft genome of an L. gongylophorus iso-
late, and we provided an inventory of its lignocellulolytic poten-
tial. We then characterized the lignocellulases produced in fungus
gardens throughout the different stages of biomass degradation in
situ by performing metaproteomic analyses on different strata of
At. cephalotes and Ac. echinatior gardens. Lastly, to investigate the
degree of conservation between lignocellulases encoded by differ-
ent L. gongylophorus strains, we compared the sequences of 4 gly-

coside hydrolases sequenced from isolates associated with differ-
ent ant hosts and geographic areas.

MATERIALS AND METHODS
Fungal genome sequencing and annotation. The Leucoagaricus gongylo-
phorus Ac12 strain used for genome sequencing was isolated from a nest of
At. cephalotes in Gamboa, Panama, in July 2010. Cultures of L. gongylo-
phorus were maintained in the dark at 30°C on plates of potato dextrose
agar (BD Difco, Franklin Lakes, NJ). DNA was purified using a modified
cetyltrimethylammonium bromide (CTAB) extraction. Briefly, mycelium
was scraped directly from plates into 2-ml tubes containing 0.25 mg of
silica beads and 1� phosphate-buffered saline (PBS) and shaken for 2 min
in a bead beater. Lysed fungal cells were then combined with CTAB buffer,
and DNA was extracted as previously described (23). DNA was sequenced
using one plate each of shotgun and 8-kb paired-end Roche 454 Titanium
pyrosequencing (24) and subsequently assembled using the program
Newbler v. 2.1 (details are in Table 1).

Proteins were predicted from the assembly using the programs
GeneMark-ES (25) and Augustus (26) (for details, see the supplemental
material). Each protein prediction data set was annotated independently,
and proteins predicted by both tools were identified using BLASTP (27).
Only proteins identified in our metaproteomic analyses (at least one pep-
tide matching with �10-ppm error; see below for details) were included
in the final protein prediction data set. Eukaryotic Orthologous Group
(KOG) (28) and Pfam (29) annotations were constructed using reverse
PSI-BLAST (RPS-BLAST) (30) (E value, 1e�5), carbohydrate-active en-
zymes (CAZymes) (31) were identified using methods previously de-
scribed (16), fungal oxidative lignin-degrading enzymes (FOLymes) (32)
were identified by comparing all predictions to proteins on the FOLy
database (downloaded 1 November 2012) using BLASTP (E value,
1e�10), and proteases were predicted using the MEROPS database (33).
The annotations for all predicted CAZymes, FOLymes, and proteases
were inspected manually. Signal peptide and protein localization predic-
tions were generated for all fungal proteins using the programs WolfPSort
(34) and SignalP (35) (both the hidden Markov model and neural net-
work implementation). All FOLymes and proteases not predicted to be
secreted were excluded from subsequent analyses. Annotations for all pro-
teins confirmed through spectral mapping can be found in Data Set S1 in the
supplemental material. A list of the most abundant L. gongylophorus lignocel-
lulases identified in the metaproteomic data can be found in Table 2.

Metaproteomic sample preparation, processing, and analysis.
Metaproteomic analysis was conducted with garden material collected
from one At. cephalotes and one Ac. echinatior leaf-cutter ant colony
reared in the laboratory on diets of oak (Quercus) and maple (Acer). Three
samples were collected across the vertical gradient of biomass degradation
in each fungus garden (top, middle, and bottom strata). Details for pro-
teomic sample preparation can be found in the supplemental material.
Briefly, 150 mg of each sample was added to an ice-cold mortar with liquid
nitrogen and ground for �2 min with a pestle. Then, 2 ml of water was
added to the sample with continuous grinding until the mixture was

FIG 1 Leaf-cutter ants forage on fresh foliar biomass (A) and use it as manure
to cultivate symbiotic microbial gardens (B) that they consume for food. Fresh
biomass is progressively degraded after it is integrated into the top strata of
leaf-cutter ant gardens, creating a vertical gradient of biomass degradation (C).
Photo credits: panel A, http://en.wikipedia.org/wiki/File:Leafcutter_ants
_transporting_leaves.jpg (used under the GNU free documentation license,
version 1.2); panel B, photo by Jarrod J. Scott; panel C, reprinted from refer-
ence 16 (based on original art by Cara Gibson and used under the Creative
Commons attribution license).

TABLE 1 L. gongylophorus draft genome sequencing and annotation
statistics

Statistic Value

No. of contigs in the L. gongylophorus assembly 92,785
Total size (bp) in assembly 101,584,475
N50 contig size (bp) 1,793
No. of predicted proteins 12,132
No. of proteins verified by spectral mapping 4,567

% with KOG annotations 71.1
% with Pfam annotations 71.4

Total no. of mass spectra mapped onto proteins 484,059
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thawed. The samples were pipetted into 0.6-ml centrifuge tubes with
0.1-mm zirconia/silica beads and bead beaten for 3 min. The tubes were
centrifuged at 4°C at 10,000 � g for 5 min, and the supernatant was
removed. The collected supernatant was then centrifuged at 4000 � g for
5 min to remove debris. Two proteomic samples were prepared from each
biological sample, one using a Rapigest SF surfactant (Waters, Milford,
MA) protocol and the other using a filter-aided sample preparation
(FASP) (36) protocol, and resulting peptides were analyzed by liquid
chromatography– high-mass-accuracy tandem mass spectrometry (LC-
MS/MS) (LTQ Orbitrap Velos and LTQ Orbitrap; Thermo Fisher Corpo-
ration, San Jose, CA). The peptide tandem mass spectra resulting from
these procedures were then mapped onto appropriate protein prediction
data sets. An outline of the metaproteomic workflow is provided in the
supplemental material (Fig. S4). Peptide matches were filtered using Se-
quest scores (37), MS-GF software spectral probabilities (38), and false
discovery rates, as previously described (17). Moreover, all peptides with a
�10-ppm mass error were discarded. Proteins with only a single unique
peptide matching were retained, but those mapping to lignocellulases
were inspected manually. These peptides are listed in Data Set S4.

Protein prediction databases used for spectral mapping. Both the
Augustus and GeneMark-ES protein predictions of the draft L. gongylo-

phorus genome were used independently for spectral mapping. To com-
pare fungal proteins to those of bacteria in fungus gardens, 10 databases
corresponding to bacterial proteins were also used. Four of these data-
bases correspond to bacterial metagenomes constructed from Atta colom-
bica, At. cephalotes, and Ac. echinatior fungus gardens, while 6 correspond
to the genomes of bacteria isolated from fungus gardens (Enterobacter
strain FGI 35, Pseudomonas strain FGI 182, Serratia strain FGI 94 [39],
Enterobacteriaceae strain FGI 157 [40], Klebsiella variicola AT-22, and
Pantoea strain at-9b). Proteins were predicted using the software pro-
grams IMG-ER (41) and Prodigal (42) for the metagenomic and genomic
data sets, respectively, and CAZymes were predicted from these data sets
in a manner identical to that of the L. gongylophorus protein predictions.

Statistical analyses of spectral profiles for L. gongylophorus ligno-
cellulases. The numbers of mass spectra mapped to L. gongylophorus
lignocellulases were compared between samples to identify enzymes en-
riched in a given stratum. The numbers of spectra mapping to both
GeneMark-ES and Augustus proteins were combined, if predicted by both
programs, and final spectral profiles were clustered using Pearson’s r val-
ues calculated in the R software environment (http://www.R-project.org).
In the case of individual lignocellulases (see Fig. S1 and S2 in the supple-
mental material), only those proteins having at least 10 spectra mapping

TABLE 2 Fungal lignocellulases with high spectral abundance in the metaproteomic data setsa

LAG ID Protein family Annotation

No. of spectra mapped

Ac. echinatior At. cephalotes

CAZymes
LAG_992 GH15 Glycoamylase, glycodextranase 3,812 1,428
LAG_4755 PL1 Pectin/pectate lyase 3,425 1,121
LAG_3581 CE5 Acetyl-xylan esterase, cutinase 305 1,440
LAG_1450 CE8 Pectin methylesterase 998 543
LAG_543 GH28 Polygalacturonase 1,050 387
LAG_3369 PL4 Rhamnogalacturonan lyase 889 462
LAG_3001 GH35 �-Galactosidase 495 557
LAG_81 PL4 Rhamnogalacturonan lyase 116 791
LAG_420 GH18 Chitinase, acetylglucosaminidase 186 688
LAG_2062 GH3 Glucosidase, xylosidase 325 252
LAG_1651 GH78 Rhamnosidase 163 403
LAG_2564 GH3 Glucosidase, xylosidase 116 445
LAG_2638 GH13, CBM20 Amylase, pollulanase, glucosidase 449 58
LAG_5098 GH3 Glucosidase, xylosidase 335 131
LAG_4224 GH10 Xylanase 249 146

FOLymes
LAG_2404 LO1 Laccase 3,483 1,947
LAG_2639 LO1 Laccase 2,562 2,013
LAG_2522 LDA3 Glyoxal oxidase 1,356 641
LAG_5549 LO1 Laccase 264 373

Proteases
LAG_2622 A01A Aspartyl protease 7,717 3,371
LAG_3716 M36 Metalloprotease 2,861 1,564
LAG_2011 S09X Serine protease 1,998 1,262
LAG_2465 S53 Serine protease 1,578 712
LAG_3735 S08A Serine protease 1,599 337
LAG_981 S10 Serine protease 1,038 310
LAG_5096 S08A Serine protease 471 783
LAG_439 A01A Aspartyl protease 433 693
LAG_7402 A01A Aspartyl protease 379 220
LAG_3725 M28E Metalloprotease 388 120
LAG_2527 S53 Serine protease 307 122
LAG_3512 S08A Serine protease 145 247
LAG_1757 S10 Serine protease 243 91

a The spectral abundances shown represent the sum recovered from the top, middle, and bottom strata for both the Ac. echinatior and At. cephalotes samples.
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were considered in order to reduce the chances of spurious clustering due
to low spectral coverage. In the case of lignocellulase families, all spectra
mapping to proteins of a given family were combined, and all CAZy,
FOLy, and MEROPS protein families are shown (Fig. 2). Fisher’s exact test
was performed on the raw number of spectra mapping to enzymes in
different samples to identify lignocellulases enriched in one sample com-
pared to another. Comparisons were performed only between samples
corresponding to the same strata in Ac. echinatior and At. cephalotes gar-
dens.

PCR amplification, sequencing, and phylogenetic analysis of L.
gongylophorus CAZymes. All L. gongylophorus strains used for phyloge-
netic analysis were obtained from leaf-cutter ant colonies collected from
different locations in South and Central America and maintained in the
Currie laboratory (details are in Table 3). Cultures were isolated on plates
of potato dextrose agar (BD Difco, Franklin Lakes, NJ) and maintained at
30°C in the dark. DNA was extracted using a modified phenol-chloroform
method. Primers used for the amplification of genes encoding one GH6
and two GH10 glycoside hydrolases were designed in this study from
contigs present in previously reported community metagenomes of ant
gardens (details are in Table S5), which contained a small amount of L.
gongylophorus sequences in addition to the bacterial component (17).
Amplification of partial-length GH7-encoding genes was performed us-
ing the primers fungcbhIF and fungcbhIR, designed in a previous study
(43). All sequences were amplified using PCR on an MJ Research PRD-
200 Peltier thermal cycler with a 2-min 94°C denaturing step followed by
29 cycles of a 1-min 94°C denaturing step, a 2-min annealing step (see
individual temperatures used below), and a 2-min 72°C elongation step,
and finally a 6-min 72°C elongation step. The annealing temperatures
used for the GH7 and GH6 amplicons and two GH10 amplicons (termed
CBH1, CBHII, xynI, and xynII, respectively) were 50°C, 44°C, 52°C, and
45°C, respectively. Amplicons were run on 1% agarose gels containing
ethidium bromide (EtBr) for visualization and subsequently sequenced
using an ABI 3730xl DNA analyzer. The resulting chromatograms were
visualized using the program Sequencher v 4.5 (Gene Codes Inc., Ann
Arbor, MI). Positions for which the base calls were ambiguous due to
conflicting chromatogram signals were designated “N.”

Amino acid sequences for the nucleotide sequences of these CAZyme
genes were obtained using a combination of 6-frame translation, the soft-
ware program FGENESH (Softberry), and BLASTX (27) against the NCBI
NR database (44). Nucleotide and amino acid sequences were compared
among amplicons using standalone BLASTN and BLASTX (results are in
Table 4). A selection of top BLASTP hits was compiled for each CAZyme
and used for subsequent phylogenetic analyses. The program MUSCLE
(45) was used for amino acid alignments, and FastTree software (46) was
used to infer maximum-likelihood phylogenetic trees with corresponding

FIG 2 Heat map representing the relative numbers of mass spectra matching
to the L. gongylophorus CAZyme (blue), FOLyme (magenta), and MEROPs
(brown) protein families in the top, middle, and bottom strata of Ac. echinatior
and At. cephalotes gardens. Rows have been normalized to unity. The dendro-
gram represents clustering based on the Pearson correlation of the spectral
profiles for each protein family.

TABLE 3 Leucoagaricus gongylophorus isolates, their countries of origin, host ant species, and genes that were successfully amplified and sequenced
from their purified DNA

Isolate IDa Country of origin Host ant species

Sequencing successb

CBHI CBHII XynI XynII

LG_Peru1 Peru Acromyrmex sp. X X X X
LG_CR1 Costa Rica Atta cephalotes X X X X
LG_PN1 Panama Acromyrmex octospinosus X X X X
LG_CR2 Costa Rica Atta cephalotes X X X X
LG_CR3 Costa Rica Acromyrmex echinatior X X X X
LG_CR4 Costa Rica Acromyrmex echinatior X X X X
LG_CR5 Costa Rica Atta cephalotes X X X X
LG_Pe2 Peru Acromyrmex sp. X X X X
LG_CR6 Costa Rica Atta cephalotes X X X X
LG_ARG1 Argentina Acromyrmex laticeps X X
LG_ARG2 Argentina Acromyrmex niger X X X
a ID, identifying designation.
b All genes could be amplified, but only those genes marked with an “X” were successfully sequenced.
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local support values calculated using the Shimodaira-Hasegawa (SH) test
(47). A small number of sequences for which regions were trimmed due to
ambiguous base calls in the chromatograms were excluded in the phylo-
genetic analyses, although they were used for the overall comparison of
nucleotide and amino acid identity. Trees were visualized using the Inter-
active Tree of Life (ITOL) (48) software tool.

Accession numbers. The draft genome sequence of L. gongylophorus
has been deposited in DDBJ/EMBL/GenBank under the accession no.
ANIS00000000. The version described in this article is the first version,
ANIS01000000. L. gongylophorus sequences used in the phylogenetic anal-
ysis have been submitted to GenBank and are available under accession
no. KC476397 to KC476437. All protein prediction data sets used in spec-
tral mapping and all raw data concerning the proteomic experiments can
be found at http://omics.pnl.gov/view/publication_1059.html.

RESULTS
L. gongylophorus draft genome assembly and annotation. As-
sembly of the reads from two full plates of Roche 454 Titanium
pyrosequencing of purified L. gongylophorus DNA yielded 92,785
contigs comprising 101 Mbp of total sequence (Table 1). The larg-
est contig in the assembly was 100,988 bp in size, and 2,368 contigs
were larger than 5 kb. Analysis of the GC content of all contigs
revealed a bimodal distribution with peaks at 29% and 47%, with
primarily mitochondrial sequences comprising the former and
chromosomal sequences the latter (see Fig. S3 in the supplemental
material). Gene prediction using a combination of Augustus and
GeneMark-ES yielded 12,132 nonredundant predictions, and the
majority of these had homology to proteins in other sequence
databases (see Table S1 for details). Individual spectral mapping of
metaproteomic data to the raw Augustus and GeneMark-ES pro-
tein prediction data sets confirmed 4,567 protein predictions.
Upon annotation of these confirmed proteins using the CAZy,
FOLy, and MEROPS databases, we identified 145 predicted bio-
mass-degrading enzymes, including 81 glycoside hydrolases
(GHs), 6 polysaccharide lyases (PLs), 9 carbohydrate esterases
(CEs), 9 laccases, 5 glyoxal oxidases, 4 aryl-alcohol oxidases,
and 26 secreted proteases (see Tables S2, S3, and S4, respec-
tively). Additionally, we amplified and sequenced a single GH7
cellulase from L. gongylophorus that was not identified in the
draft genome.

Metaproteomics. Our metaproteomic analysis of six samples
comprising the top, middle, and bottom strata of Ac. echinatior
and At. cephalotes fungus gardens identified 505,566 spectra that
could be confidently mapped to amino acid sequences in at least
one of our protein prediction databases (Table 1; see also Data Sets
S1 and S3 in the supplemental material). Of these, 484,059 could
be mapped to proteins belonging to L. gongylophorus, and 4,309
could be mapped to proteins in one of our bacterial databases. Of
the 145 lignocellulases identified in the L. gongylophorus genome,
137 were represented in the metaproteome of at least one Ac.
echinatior sample and 138 in at least one At. cephalotes sample (for
details, see Data Set S2). In total, 44,347 spectra were mapped to all

L. gongylophorus lignocellulases in the Ac. echinatior samples,
while 27,878 were mapped to these same enzymes in the At. cepha-
lotes samples. Inspection of CAZymes present in the bacterial
component of the metaproteomic data identified only a single
mass spectrum mapping to a GH8 (a full list of bacterial proteins
identified in the metaproteomic data is given in Data Set S3).

Clustering analysis of spectral profiles mapping to the L. gongy-
lophorus lignocellulase protein families yielded distinct patterns
throughout both the Ac. echinatior and At. cephalotes samples
(Fig. 2). When the spectral profiles of individual enzymes were
analyzed, separate sets of lignocellulases were identified as abun-
dant in the top, middle, and bottom strata in both ant species (see
Fig. S1 and S2 in the supplemental material). Over 46% of the
lignocellulases identified in the metaproteome were overrepre-
sented in at least one Ac. echinatior stratum compared to the cor-
responding stratum in At. cephalotes, while the reverse was found
for 30% of the enzymes (Fisher’s exact test, P � 0.05; details are
available in Data Set S2). Comparison of the spectral profiles re-
covered for all L. gongylophorus proteins in the six samples re-
sulted in separate clustering of the At. cephalotes and Ac. echinatior
samples (Fig. 3).

The most abundant L. gongylophorus biomass-degrading en-
zymes in the six metaproteomic data sets comprised 15 CAZymes,
4 FOLymes, and 13 proteases (Table 2). Specifically, these en-
zymes comprised 10 GHs, 3 PLs, 2 CEs, and 2 laccases. Of the
abundant CAZymes identified, the majority belong to families
predicted to hydrolyze hemicelluloses, pectins, and starch. Inspec-
tion of the spectral profiles of the most abundant lignocellulases
revealed many to be most abundant in a particular stratum of
fungus garden (Fig. 4). Of the two most abundant laccases iden-
tified, one (LAG_2404) was found to be most abundant in the top
strata of both Ac. echinatior and At. cephalotes gardens, while a
nearly opposite trend was identified for the other (LAG_2639). Of
the three cellulases identified, the cellobiohydrolases (GH6 and
GH7) were found to be most abundant in the bottom strata of

TABLE 4 Nucleotide and amino acid similarities of four CAZymes sequenced from 11 L. gongylophorus isolates

Amplicon CAZy family
Length of nucleotide
alignment

Length of amino
acid alignment

Avg nucleotide
identity (%)

Avg no. of gaps in
nucleotide alignment

Avg amino acid
identity (%)

Avg no. of gaps in
amino acid alignment

XynI GH10 647 94 99.1 0.92 99.17 0
XynII GH10 429 152 98.9 1.04 100 0
CBHI GH7 507 147 98.8 1.02 98.94 0
CBHII GH6 838 237 99.5 0.91 99.9 0

FIG 3 Comparison of the spectral profiles recovered from mapping all mass
spectra against the L. gongylophorus protein predictions.
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both ant gardens, while no trend could be found for the endoglu-
canase (GH9). Of the most abundant hemicellulases and pecti-
nases, a glucoamylase (GH15) and xylan esterase/cutinase (CE5)
were most abundant in the top strata, while a pectin methyles-
terase (CE8) displayed an opposite trend. No trend consistent
between Ac. echinatior and At. cephalotes samples could be identi-
fied for the other abundant lignocellulases.

Analysis of fungal lignocellulases from different isolates. To
investigate the similarities of L. gongylophorus lignocellulases iso-
lated from different ant hosts and geographic regions, we se-
quenced and compared the partial-length nucleotide sequences of
4 GHs from 11 fungal strains isolated from Atta and Acromyrmex
colonies collected in Panama, Costa Rica, Peru, and Argentina
(Table 3). Comparison of the nucleotide sequences revealed that
each gene was on average 98.8 to 99.5% identical to corresponding
genes in other isolates (Table 4). Moreover, the corresponding
amino acid sequences for the genes were on average 98.9 to 100%
identical between isolates. Phylogenetic analysis of these amino
acid sequences revealed homology to enzymes encoded by numer-

ous other saprotrophic fungi (see Fig. S5 in the supplemental ma-
terial).

DISCUSSION

In Neotropical ecosystems, leaf-cutter ants and their symbiotic
fungus play important roles in nutrient cycling and plant biomass
turnover (8). Despite their importance to leaf-cutter ants, it has
remained largely unknown how the fungus gardens cultivated by
these insects convert fresh foliar biomass into nutrients for their
hosts. Here, using genomic and metaproteomic tools, we have
provided detailed insight into the lignocellulases used by the fun-
gal cultivar L. gongylophorus to degrade plant biomass in the sym-
biotic gardens of leaf-cutter ants.

The combination of our genomic and metaproteomic analyses
supports the hypothesis that L. gongylophorus is the dominant
driver of biomass degradation in leaf-cutter ant gardens. In our
analysis of the draft genome of this fungus and our metaproteomic
experiments, we identified a total of 145 lignocellulases, including
numerous pectinases, xylanases, amylases, and cellulases (Fig. 2
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and Table 2; see also Fig. S1 and S2 in the supplemental material).
Future transcriptomic analyses and additional genome sequenc-
ing will likely identify more enzymes used by this fungus for bio-
mass degradation in leaf-cutter ant fungus gardens.

Previous metagenomic characterizations of bacterial commu-
nities in Atta and Acromyrmex gardens recovered mainly oligosac-
charide-degrading enzymes and few CAZy families associated
with the degradation of recalcitrant polysaccharides (17), suggest-
ing that bacteria are not playing a prominent role in biomass deg-
radation in fungus gardens. Moreover, our metaproteomic results
revealed that although �81,000 spectra could be confidently
mapped to diverse L. gongylophorus lignocellulases, only a single
spectrum could be mapped to a bacterial GH8, a CAZyme family
that in bacteria is often associated with cell wall modification
rather than plant biomass degradation (49). Previous work iden-
tified a bacterial glucosidase produced in fungus gardens (17),
however, and it remains a possibility that bacterial enzymes not
present in the protein databases used in this study could be playing
a role in biomass degradation.

Most of the highly abundant L. gongylophorus enzymes identi-
fied in the metaproteomic data are predicted to degrade pectin,
xylan, starch, and proteins (Table 2 and Fig. 4A). This is consistent
with studies showing that both hemicellulases and proteases are
produced by this organism (20, 50, 51) and that activity against
these substrates can be consistently detected in whole fungus gar-
dens (52). Moreover, culture-based work has shown that L. gongy-
lophorus can produce enzymes active against a variety of polysac-
charides when grown in pure culture (53, 54). Our finding that
enzymes targeting hemicelluloses are among the most highly
abundant in our metaproteomic data sets indicates that these
polymers are likely the primary polysaccharides degraded by L.
gongylophorus in fungus gardens. The abundance of proteases
throughout all strata of our samples also suggests that plant pro-
teins may be an important nutrient source for L. gongylophorus
throughout the degradation process.

In addition to numerous hemicellulases and proteases, our
genomic and metaproteomic analyses also identified putative cel-
lulases (GH6, GH7, and GH9) produced by L. gongylophorus. In-
terestingly, this fungus has been reported to be incapable of
growth on cellulose alone in pure culture (10). Moreover, recent
investigations of cellulose degradation in fungus gardens have
given conflicting results (16, 55), raising the question of whether
L. gongylophorus or other microbes in fungus gardens can degrade
this polymer. Our genomic and metaproteomic work is the first
sequence-based evidence that L. gongylophorus both encodes cel-
lulases and produces them in fungus gardens, suggesting that this
fungus is contributing to some amount of cellulose degradation in
these ecosystems. Results of our metaproteomic data also indicate
that the abundance of the GH6 and GH7 cellulases increases in the
lower strata of ant gardens (Fig. 4B), suggesting that they may be
produced primarily when less-recalcitrant polymers have been ex-
hausted. Interactions with bacteria or compounds produced by
ants in gardens may stimulate L. gongylophorus to produce these
enzymes, potentially explaining why reports of the cellulolytic
ability of this fungus in pure culture have varied (10, 11).

Our identification of numerous laccases and accessory oxi-
dases with secretion signals in the genome of L. gongylophorus
indicates that these enzymes may also be important for lignocel-
lulose degradation in the ant-fungus symbiosis. Two laccases, an
aryl-alcohol oxidase, and a glyoxal oxidase were among the most

well-represented enzymes in our metaproteomic data (Table 2
and Fig. 4B), suggesting that L. gongylophorus produces large
quantities of these enzymes in ant gardens. Similar enzymes in
other basidiomycetous fungi have been shown to play important
roles in the degradation of plant polymers, especially lignin (56).
Although recent work has indicated that significant amounts of
lignin are not degraded in fungus gardens (16), it is likely that this
polymer is physically linked to polysaccharides in plant cell walls,
and partial degradation of lignin may therefore make otherwise
unavailable polysaccharides more accessible to other lignocellu-
lases. The use of laccases and redox-active enzymes may thus in-
crease the efficiency of biomass degradation even if lignin itself is
not used as a carbon source.

Alternatively, laccases may be necessary for the degradation of
secondary metabolites in plant tissue that may be toxic to L. gongy-
lophorus or the host ants, as indicated by recent work (57). This
may explain why some laccases were found to be more abundant
in top garden strata (Fig. 4A), where plant toxins would first be
encountered by L. gongylophorus and lignin degradation would
not yet be necessary to access additional polysaccharides. It has
previously been suggested that secondary metabolites produced
by plants, or even by endophytic fungi living in plant tissue, may
be important factors influencing the choice of foliar biomass for-
aged by the ants (58). The laccases and redox-active enzymes pro-
duced by L. gongylophorus may thus play an important role in
detoxifying these compounds and broadening the range of plants
that can be harvested and efficiently degraded in the ant-fungus
symbiosis.

The composition of plant biomass in ant gardens is highly vari-
able due to the diversity of plants foraged by the ants and changes
in substrate composition throughout the degradation process
(59). Therefore, the ability of L. gongylophorus to quickly alter the
production and secretion of lignocellulases in response to nutrient
availabilities is likely critical for efficient biomass processing. Con-
sistent with this, we found distinct stratification in the lignocellu-
lase profiles of the metaproteomes of both Ac. echinatior and At.
cephalotes gardens, indicating that separate enzymatic cocktails
are used by L. gongylophorus for the degradation of lignocellulose
at different stages of biomass breakdown (Fig. 2; see also Fig. S1
and S2 in the supplemental material). A distinct cocktail of abun-
dant CAZymes, laccases, and proteases was identified in the gar-
dens throughout all stages of biomass degradation (see Fig. S1 and
S2), suggesting that L. gongylophorus uses different sets of these
enzymes to acquire nutrients from different plant substrates de-
pending on the stage of biomass degradation.

Despite the similar overall patterns of stratified lignocellulase
profiles between ant species, significantly different quantities of
mass spectra were recovered from 65% of the lignocellulases when
strata were compared directly (Fisher’s exact test, P � 0.05). Both
nests had been fed the same mixture of oak and maple leaves prior
to the time of sampling, indicating that this difference is not due to
diet. Our clustering analysis of overall mass spectra profiles for all
L. gongylophorus proteins suggests that the physiology of L. gongy-
lophorus may be influenced by the host ants (Fig. 3). Although
both Acromyrmex and Atta species culture L. gongylophorus, a
number of factors could contribute to differences in the physiol-
ogy of the fungal symbiont between nests. For example, differ-
ences in the hygienic practices of the host ants or interactions with
bacteria coinhabiting fungus gardens are possible explanations.

Species of Atta and Acromyrmex are distributed across the
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Americas in numerous distinct ecosystems, and their selection of
plants varies depending on the ant species, location, and season
(59). Because of this ecological variability, we explored the possi-
bility that lignocellulases varied with the range or species of ant
host. Contrary to our expectations, our comparison of four
CAZymes reveals that the lignocellulases encoded by this fungus
are highly conserved across both host ant species and geographic
range (Tables 3 and 4; see also Fig. S5 in the supplemental mate-
rial). This is also surprising given previous reports identifying ge-
netic diversity in L. gongylophorus cultures obtained from the
same geographic area (60). Interestingly, two of the genes ana-
lyzed here encode predicted cellulases (families GH6 and GH7),
consistent with previous work indicating that the degradation of
cellulose is an important process in fungus gardens (16).

In this work, we have demonstrated that the fungal symbiont of
the ants, L. gongylophorus, encodes a diversity of plant biomass-
degrading enzymes and is likely the primary driver of lignocellu-
lose degradation in fungus gardens. Our metaproteomic analysis
provides evidence that cellulases and redox-active enzymes pro-
duced by L. gongylophorus may be playing critical roles in this
symbiosis by both degrading recalcitrant plant polymers and de-
toxifying secondary metabolites in plant tissue. Moreover, our
phylogenetic analysis of L. gongylophorus CAZymes indicates that
different species of leaf-cutter ants, which may inhabit different
ecosystems and have colony sizes differing by millions of workers,
appear to use the same highly conserved enzymes of L. gongylo-
phorus to degrade their plant forage and convert it into usable
nutrients. Our work highlights the importance of microbes to the
herbivory of a dominant herbivore, as well as their importance to
nutrient cycling and carbon turnover in Neotropical ecosystems.
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